艾默生ups显示说明_艾默生ups负载灯怎么看
1.电脑不定时断电关机(500分悬赏)不要复制的
2.UPS的市电和电池同时供电是什么工作模式
3.艾默生ups 均不供电是什么意思?
三相不间断电源的新进展
[日期:2006-11-13] 来源:电源技术应用 作者:浙江大学 王林兵 何湘宁 [字体:大 中 小]
摘 要:对三相不间断电源系统的各模块电路拓扑、整机电路结构以及各种流行控制策略做了一个概括性评析,指出了不间断电源设计和应用中存在的问题及当前研究的新热点,最后对UPS的发展动向做出了预言
关键词:三相不间断电源;逆变器并联;数字控制
O 引言
在今后相当长的一段时间内,我国市电电网供电不足,电压波动大,干扰严重的局面仍将存在。而各行业、各领域的快速发展对供电质量提出了越来越高的要求,尤其是实时性很强的重要系统、重要部门和重要的用电设备对供电质量的要求和我国的电网实际状况的矛盾日益尖锐。因此,不间断电源(UPS)作为一种稳压稳频纯净化的绿色电源越来越成为人们关注的焦点。为了不断提高UPS的性能,科研人员对UPS系统做了大量的研究,提出了很多的电路拓扑与控制策略。
1 UPS的电路拓扑
UPS的可靠运行离不开各模块的协调工作,下面就UPS主要功能模块电路拓扑进行简要分析。
1.1 整流和功率因数校正电路
整流电路在应用中构成直流电源装置,是公共电网与电力电子装置的接口电路,其性能将影响公共电网的运行和用电质量。高性能的UPS要求有较高的输入功率因数,并尽量减少输入电流的谐波分量。传统单相UPS多用模拟方法,三相UPS多用相控式整流电路和电压型单管整流电路。
1.1.1 传统三相相控式整流电路和电压型单管整流电路
相控式整流电路用半控式功率器件作为开关,存在着以下问题:
1)网侧谐波电流的存在将降低设备网侧功率因数,增加无功功率;
2)相控整流换流方式,导致换流期中电网电压畸变,不仅使自身电路性能受到影响,而且对电网产生干扰,对同一接地点的网间其他设备带来不良影响;
3)相控整流环节是一个时滞环节,无法实现输出电压的快速调节。
电压型单管整流电路是三相不控整流桥加Boost电路的简称,它的缺点是:电流峰值大,不仅妨碍系统功率的提高,也增加了导通损耗和开关损耗;为了保持网侧功率因数的提高,Boost电路必须有一定的升压比,这对三相电路会导致直流输出电压过高。
1.1.2 电流型三相桥式整流电路
电流型三相桥式整流电路如图1所示,其优点是反馈控制简单,不需要在控制电路中加入电流反馈,只须调节各开关管的占空比就可以实现输入电流正弦化;直流侧的电压较低。缺点是输入电流正弦度不是很好,在输入侧必须加入并联电容,实现移相。这种电路现在开始成为研究的热点之一。这种电路适用于大功率整流电路且对功率因数要求不高的场合。
1.1.3 电压型三相桥式整流电路
电压型三相桥式整流电路如图2所示,其特点是用高频PWM整流技术,器件处于高频开关状态,由于器件的开通和关断状态可以控制,所以整流器的电流波形是可控制的。这种电路的优点是可以得到与输入电压同相位的输入电流,也就是输入功率因数为1,输入电流的谐波含量可以接近为零;能量可以双向流动,正常时能量从交流侧向直流侧流动,直流输出电压高于给定值时,能量从直流侧向交流侧流动,具有较高的转换效率。缺点是属于Boost型整流电路,直流侧电压要求较高。这种电路也是近年来研究的一个热点。
1.2 蓄电池组和充放电电路
蓄电池组是UPS的储能单元,市电正常时它吸收来自市电的能量并以化学能的形式储存起来,一旦市电中断,它把储存的化学能转换为电能向逆变器供电,维持负载供电的连续性。在中小功率的UPS系统中,电池组的电压通常比较低,因此,通常使用能量能够双向流动的充放电电路[4]。大功率系统中为了提高效率,简化电路通常直接把电池组并接在直流母线上。
1.3 逆变电路
逆变器是UPS的核心,它把直流电能转换成用户所需的稳压稳频的交流电能。下面仍以三相逆变器为对象分析近年来逆变器的研究热点。
1.3.1 三相半桥式逆变电路
在三相逆变电路中以三相半桥桥式电路应用最为普遍,这种电路的特点是用全控型器件组成逆变器,存在着功率密度高,性能好,小型轻量化等优点。这种电路便于使用新的控制策略以提高逆变器的质量。但是,要实现带100%的独立负载是比较困难的。
1.3.2 H桥逆变器
对于超大容量的逆变器,由于功率等级的大幅度提高,对逆变器的结构提出了新的要求,H桥臂逆变器便是选择之一。这种逆变器输出变压器用多绕组接法,输出变压器的原边用3个独立的绕组,逆变器输出用3个独立的H桥。这样控制方便,但是成本较高。
1.3.3 三相四桥臂变换技术
由于三相电路中,三桥臂逆变器本身存在着固有的缺陷,人们开始寻求新的电路结构,于是出现了三相四桥臂逆变器,如图3所示。这种电路结构输出为三相四线制,三相电压可以独立控制,控制方法灵活,但是这种拓扑的算法比较复杂,PWM矢量在三维空间中旋转,必须用数字控制方法才能实现空间PWM波形的生成,这种电路成为了近年来研究的热点之一。
1.4 三相UPS整机电路
1.4.1 传统三相UPS电路结构
传统的三相UPS结构,输入用晶闸管整流,输出用逆变器,电池直接挂接于直流母线,整流器同时作为充电器。输出用变压器隔离,可以实现输入输出完全隔离,确保电网的扰动不会对负载造成干扰。市电断电时,电池通过逆变器输出稳定的交流电;在逆变器出现故障时,通过旁路输出电压,保证了供电的可靠性。这种结构的主要缺点是体积和重量都比较大。
1.4.2高频链式三相UPS
为了降低成本,减小UPS的体积和重量,出现了高频链式三相UPS,如图4所示。这种电路省去了庞大的工频变压器,输入用高频整流,可以获得较高的输入功率因数和较低的输入谐波电流。其缺点是输入输出没有变压器隔离,电网的扰动可能会给UPS的输出造成扰动;输出三相电压靠电池和电容中点形成中线,所以在控制中必须保持正负直流电压幅值的相等,否则输出中线会有较大的直流成分,对负载和负载中的变压器不利;输入用三相四线制,中线有电流流过,可能会造成中线电位偏移,对负载造成干扰;输入输出不隔离,并联时的环流问题较难解决。
1.4.3 新的在线互动式UPS
由于以上两种UPS都要经过两次满功率变换,因此系统的效率较低,从提高系统效率的角度出发,出现了一种串并联补偿式的大容量结构,是一种新的在线互动式结构,如图5所示。这种拓扑输入输出同样没有变压器隔离,所以会有高频链式UPS的缺点。这种UPS的输出频率必须保持与电网一致,而且对电网的扰动的抑制能力不强,因而供电质量比传统的三相UPS差。它的特点是从输入到输出间的能量不是经过满功率的变换,同样是由两个高频变换器组成,但是变换器1最大只承受20%的功率,从成本上讲,这种结构的成本更低。在控制方法上,变换器1是一个电压补偿器,用于补偿电网电压的畸变;变换器2是一个电流补偿器,用于补偿负载的谐波电流,并且在市电断电时作为满功率电压型逆变器向负载供电。
1.4.4 输入输出隔离的高频链UPS
由于传统工频UPS的输入输出带有隔离变压器,输出有很好的隔离特性,高频链式的UPS有很好的输入特性,因此,出现了这种带有输入输出隔离的高频链式的UPS如图6所示。由于高频整流的缺点,在输入侧必须接一个自耦变压器降压,增加了整机的重量和成本;另外,由于输入用了高频变换器,整机的效率比高频链式和传统式UPS的效率都低。但是,由于输入功率因数是1,没有谐波电流,所以所消耗的总电能低于传统三相UPS。
1.4.5输入输出并联的UPS
这种电路中,输入端由多个整流器并联而成,给直流母线供电,同时直流母线给多个逆变器提供直流电压,多个逆变器的输出端直接连接同时给负载供电。这种方式可以增强UPS的容量,增加系统的可靠性,成本下降,可维护性增强,但是,并联模块越多,各模块间的均流问题越难解决。
2 不间断电源的控制技术
随着控制理论和功能丰富,性能优良的各种微控制器的迅猛发展,出现了多种离散化控制方法。从控制反馈回路的数目可分为单环、双环、多环控制。在硬件允许的条件下尽可能地提高反馈回路数目,可以提高控制效果。从控制原理上看包括数字PID控制、状态反馈控制、无差拍控制、重复控制、滑模变结构控制、模糊控制、神经网路控制、空间矢量控制等方法。
数字PID控制控制的适应性好,具有较强的鲁棒性;算法简单明了,便于用单片机或DSP实现。但是存在两方面的局限性:一方面是系统的样量化误差降低了算法的控制精度;另一方面,样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。
预测控制可以实现很小的输出电流畸变,抗噪音能力强,但是,这种算法要求知道精确的负载模型和电路参数,因此鲁棒性差,而且由于数值计算造成的延时在实际应用中也是一个问题。滞环控制具有快速的响应速度,较高的稳定性,但是滞环控制的开关频率不固定,使电路工作可靠性下降,输出电压的频谱变差,对系统性能不利。
无差拍控制的基本思想是根据逆变器的状态方程和输出反馈信号推算出下一个开关周期的PWM脉冲宽度,因此,从理论上可以使输出电压在相位和幅值上都非常接近参考电压,由负载变化或非线性负载引起的输出电压误差可在一个开关周期内得到校正。但是,无差拍控制是一种基于被控制对象精确数学模型的控制方法,鲁棒性很差。
滑摸控制是一种非线性控制,这种控制的特点是控制的非连续性。这种控制既可以用于线性系统也可用于非线性系统。这种控制方法具有很强的鲁棒性。缺点是要得到一个令人满意的滑模面是很困难的。
重复控制是一种基于内模原理的控制方法。逆变器用重复控制的目的是为了消除因整流桥负载引起的输出电压波形周期性的畸变。重复控制器可以消除周期性干扰产生的稳态误差,但是,由于重复控制延时一个工频周期的控制特点,使得单独使用重复控制的UPS逆变器动态特性极差。
模糊控制属于智能控制的范畴。模糊控制器的设计不需要被控对象的精确数学模型,因此具有很强的鲁棒性和自适应性。模糊控制类似于传统的PD控制,因而这种控制有很快的响应速度,但是其静态特性不令人满意。神经元网络控制是模拟人脑神经中枢系统智能活动的一种控制方式。神经网络具有非线性映射能力、并行计算能力和较强的鲁棒性等优点,已广泛地应用于控制领域,尤其是非线性系统领域。目前在神经网络结构的设计、学习算法等方面已取得了一定成果。但是,由于硬件系统的限制,目前神经网络控制还无法实现对逆变器输出电压波形进行在线控制,多数应用都是用离线学习获得优化的控制规律,然后利用得到的规律实现在线控制。
谐波注入式PWM技术,直流母线电压的利用率基本上可以达到loo%。这种方法对于电压开环的控制系统非常有效,但在闭环控制系统中由于谐波注入的初始相位必须与基波保持一致,在电压瞬时值控制中电压基波的初始相位无法精确定位而难以应用。
空间矢量PWM具有电流畸变小、直流母线电压利用率高以及易于数字化实现等优点,因此近年来得到了较多的应用。这种控制方式也需要电路的精确模型。
上述各种控制方案都有其优势,但是也有其不足。同时用不同的控制方法形成复合控制的控制方案在实践中得到了广泛的应用,取得了较好的效果。
3 不间断电源设计和应用中存在的问题
美国UPS厂商APC.公司,总结并归纳了UPS供电系统当前面临的、也是今后必须解决的5个方面的问题:
1)生命成本周期问题;
2)不间断电源系统的可适应性及可扩展性问题;
3)提高不间断电源的可用性问题;
4)不间断电源对供电系统的可管理性问题;
5)可服务性问题。
4 不间断电源的最新发展动向
不间断电源的发展动向是UPS的多机并联冗余化,用冗余并机技术提高UPS的容量和可靠性;用功能更丰富的硬件设备实现全数字控制,使各种先进的复杂控制算法得以运用而不断提高UPS的性能,即向数字化和高频化发展;UPS的进一步智能化和网络化,使计算机网络成为不间断网络。
4.1 UPS的多机并联技术实现冗余化
UPS的并联技术可以带来以下几个方面的好处:
1)可以灵活地扩大电源系统的容量;
2)可以组成并联冗余系统以提高运行的可靠性:
3)极高的系统可维修性,当单台电源出现故障时,可以很方便地通过热插拔的方式进行更换和维修。
用并联技术可以形成具有容错功能的冗余式供电系统,从目前掌握的资料来看,主要有以下几种冗余配置方案:
1)集中式并联控制;
2)主从式并联控制;
3)分散式并联控制;
4)环链式并联控制;
5)无线式并联控制。
这几种并联方式,从可靠性的角度看,集中式最差,无线式控制最好,也成为近年来的研究热点。
4.2 UPS的数字化、高频化
最初的UPS用模拟控制方法有很多局限性。随着数字处理器计算速度的不断提高,使得各种先进的数字控制方法得以实现,使UPS的设计具有很大的灵活性,设计周期缩短,性能大为提高。UPS高频化,有效地减小了装置的体积和重量,并可消除变压器和电感的音频噪音,同时改善了输出电压的动态响应能力。数字化控制方法成了当今交流电源领域的一个研究热点,一种必然的发展趋势是各种方法相互渗透,互相结合形成复合控制方案。数字化复合控制是UPS控制的一个发展方向。
4.3 UPS的智能化、网络化
为了适应计算机网络的发展,UPS中已经开始配置RS232接口、RS485接口、USB接口、SNMP卡和MODEM结合,成为计算机网络的一部分,具有以下优异的智能化、网络化特性。
1)实时监控功能它对UPS各模拟参量和表示工作状态的开关量进行实时高速样,实现数字式监控。
2)自诊断、自保护功能 UPS将实时集来的各项模拟参量和工作状态数据以及系统中的关键硬件设备的数据与正常值进行分析比较,以判断UPS是否有故障隐患存在。如果有故障,根据相应的故障信息级别在控制面板的显示屏上以友好的图形界面、文字提示方式报警,或者在现场和控制室以指示灯灯光、报警器呜叫方式报警、也可以用自动拨通电话等方式报警,并做出相应的保护动作。
3)人机对话的控制方式 大型UPS可向用户提供监控器液晶显示屏,以图形和文字方式显示工作流程和参数信息。可以提供让用户操作的可视化菜单。并以帮助和不断提示的方式引导用户按照既定方式处理故障,有效防止误操作。
4)远程控制功能在网络化时代,UPS不仅应能向由它直接供电的硬件设备提供保护,还应该对整个网络中的运行程序和数据以及数据的传输途径进行全面地保护,使之成为不间断网络。这就意味着UPS应配置相应的电源监控软件、SNMP(简单网络管理协议)管理器,使其具有远程管理能力,用户可执行UPS与网络平台之间的远程监控和数据的网络通信操作,使UPS成为网络系统中的重要组成部分。这样,由网管员通过网管软件监控多台UPS,而且被管理的UPS可以在同一个LAN也可以在不同的LAN,甚至可以通过互联网,纳入网络管理系统来管理UPS。
由于未来网络的广泛化和全球化,必然带来网络的复杂化,多种形式的网络系统连接在一起。作为网络系统的一部分,要求UPS能够实现在各种网络平台上的监控,而且随着Internet、Intranet和电子商务的超高速发展,用户对网络的可用性要求会越来越高,使UPS从对网络关键设备的保护延伸至对整个网络路径的保护
电脑不定时断电关机(500分悬赏)不要复制的
可以多久时间?
供应商给你配的是1小时的电池
是怎么算的?
公式是:UPS功率*0.7(实际功率一般高频机是0.7,工频机是0.8)/电池额定电压=1小时的电池配置(AH
16KVA跟电池有什么关糸?
电池配置都是根据UPS满载情况算的。也就是UPS实际满载功率是多少就按照多少来算。
16KVA是UPS的功率(实际功率=16000*功率因素)也就是UPS的规格,和电池没什么关系。
加电池肯定是为了增加时间,具体加多少时间,就要再算,上面已经给你公式了。
楼上的,你表达不清楚,16K是指这UPS的负载功率,而电池是延时断电后的供电时间。
看了楼主的追问。。楼上的回答不专业,UPS如果不配电池的话,那只是单纯的电源净化器而已。UPS最大的功能还是断电后供电
UPS的市电和电池同时供电是什么工作模式
其实应该不是功率的问题,并且电脑电源适应电压的范围本身就很宽(一般160V—260V而且有很好的稳压作用),就你所说的情况如果排除了和软件问题以及CPU散热问题的话我认为就三种可能。第一有可能还是你的电源的问题,把你那台机器的电源换到这台机器上来试一试,一般情况下电源的功率是够用了的,保险的话可以先插一个主硬盘的电源。二种可能就是主板的问题,你所说的所有风扇都不转,但是键盘灯又亮着,那要看看电源风扇在转没有,如果电源风扇在转的话主板出问题的可能性较大。三种就是你的主机电源开关键很有可能有轻微的短路造成电脑关机,可以换一个开关试试,这种可能性较大。另外还有一种几率很小的可能性,就是电源连接线中间有断线的情况,我们卖的新电脑曾经发现了一起这样的故障。基本上就这几种可能性了,凭我个人观点的话我觉得开关有轻微短路的可能性较大,主板故障其次。希望对你有所帮助。
不要去买稳压电源,那纯粹是多此一举!!!你看一下关机后电源风扇在转没有,没转的话主机电源开关轻微短路的可能性是很大的,这种情况也经常出现。主要检查开关是否有轻微的短路,最好是拿到电脑商那去检测。
楼上的说你专门做电源的,难道你不知道开关电源是通过脉宽控制功率电路而实现的吗?这种控制方法怕比那个滑动式的稳压器高级多了吧(滑臂式的响应时间是1—3秒,开关电源的响应时间可以达到微秒级)?并且开关电源本身就自带稳压功能,这个难道你不知道吗?别冒充专业的了!我们卖出的电脑都可以在165V左右顺利启动,曾经有一次连UPS都检测不到的155V电压下电脑都运行正常(只不过猫不能用),买稳压器纯粹是浪费钱!另外再说一句,你以前做电源的怕也是N年前了吧?现在神7都载人出仓了,科技进步了,电子元件价格一落千丈,你以为还是以前的价格吗?楼主如果真要买的话就买净化电源的,那个确实有效果,而且千万别买滑臂式稳压的。其实开关电源主要就是怕电压高,我们在使用过的数千颗节能灯中总结经验就是短时间坏了的90%以上都是电压高击穿功率管造成的(节能灯的原理和开关电源差不了多少),不是吹嘘,我可以在10秒钟之内检测出节能灯坏的元件名称及数量,因为用得太多了经验也就丰富了。
艾默生ups 均不供电是什么意思?
1、UPS的市电和电池同时供电是在线式工作模式。
2、原理是,市电进入后经滤波器整流器整流后经电容滤波一路给逆变器供电另一路给电池充电,电池一直处于浮充状态,经逆变器后成为标准的正玄波给负载供电。当市电停电或电压超线时整流器自动停止整流此时有电池给逆变器供电,当市电恢复正常时整流器自动启动继续为电池充电。
3、UPS(Uninterruptible Power System/Uninterruptible Power Supply),即不间断电源,是将蓄电池(多为铅酸免维护蓄电池)与主机相连接,通过主机逆变器等模块电路将直流电转换成市电的系统设备。主要用于给单台计算机、计算机网络系统或其它电力电子设备如电磁阀、压力变送器等提供稳定、不间断的电力供应。当市电输入正常时,UPS 将市电稳压后供应给负载使用,此时的UPS就是一台交流市电稳压器,同时它还向机内电池充电;当市电中断(事故停电)时, UPS 立即将电池的直流电能,通过逆变零切换转换的方法向负载继续供应220V交流电,使负载维持正常工作并保护负载软、硬件不受损坏。UPS 设备通常对电压过高或电压过低都能提供保护。
UPS均不供电的意思就是:不间断电源没有输出。
UPS不间断电源
一、有市电时UPS不间断电源输出正常,而无市电时蜂鸣器长鸣,无输出。
故障分析:从现象判断为蓄电池和逆变器部分故障,可按以下程序检查: 检查蓄电池电压,看蓄电池是否充电不足,若蓄电池充电不足,则要检查是蓄电池本身的故障还是充电电路故障。
1、蓄电池工作电压正常,检查逆变器驱动电路工作是否正常,若驱动电路输出正常,说明逆变器损坏。
2、逆变器驱动电路工作不正常,则检查波形产生电路有无PWM控制信号输出,若有控制信号输出,说明故障在逆变器驱动电路。
3、波形产生电路无PWM控制信号输出,则检查其输出是否因保护电路工作而封锁,若有则查明保护原因;
4、保护电路没有工作且工作电压正常,而波形产生电路无PWM波形输出则说明波形产生电路损坏。
上述排故顺序也可倒过来进行,有时能更快发现故障。
二、蓄电池电压偏低,但开机充电十多小时,蓄电池电压仍充不上去。
故障分析:从现象判断为蓄电池或充电电路故障,可按以下步骤检查: 检查充电电路输入输出电压是否正常:
1、若充电电路输入正常,输出不正常,断开蓄电池 再测,若仍不正常则为充电电路故障;
2、若断开蓄电池后充电电路输入、输出均正常,则说明蓄电池已因长期未充电、过放或已到寿命期等原因而损坏。
三、UPS开机后,面板上无任何显示,UPS不工作。
故障分析:从故障现象判断,其故障在市电输入、蓄电池及市电检测部分及蓄电池电压检测回路:检查市电输入保险丝是否烧毁;
1、若市电输入保险丝完好,检查蓄电池保险是否烧毁,因为某些UPS当自检不到蓄电池电压时,会将UPS的所有输出及显示关闭;
2、若蓄电池保险完好,检查市电检测电路工作是否正常,若市电检测电路工作不正常且UPS不具备无市电启动功能时,UPS同样会关闭所有输出及显示。
3、若市检测电路工作正常,再检查蓄电池电压检测电路是否正常。
四、在接入市电的情况下,每次打开UPS,便听到继电器反复的动作声,UPS面板电池电压过低指示灯长亮且蜂鸣器长鸣。
根据上述故障现象可以判断:该故障是由蓄电池电压过低,从而导致UPS启动不成功而造成的。拆下蓄电池,先进行均衡充电(所有蓄电池并联进行充电),若仍不成功,则只有更换蓄电池。
五、一台后备UPS有市电时工作正常,无市电时逆变器有输出,但输出电压偏低,同时变压器发出较大的噪音。
故障分析:逆变器有输出说明末级驱动电路基本正常,变压器有噪音说明推挽电路的两臂工作不对称,检测步骤如下:检查功率是否正常;
1、若功率正常,再检查脉宽输出电路输出信号是否正常;
2、若脉宽输出电路输出正常,再检查驱动电路的输出是否正常。
六、在市电供电正常时开启UPS,逆变器工作指示灯闪烁,蜂鸣器发出间断叫声,UPS只能工作在逆变状态,不能转换到市电工作状态。
故障分析:不能进行逆变供电向市电供电转换,说明逆变供电向市电供电转换部分出现了故障,要重点检测市电输入保险丝是否损坏;
1、若市电输入保险丝完好,检查市电整流滤波电路输出是否正常;
2、若市电整流滤波电路输出正常,检查市电检测电路是否正常;
3、若市电检测电路正常,再检查逆变供电向市电供电转换控制输出是否正常。
七、后备式UPS当负载接近满载时,市电供电正常,而蓄电池供电时蓄电池保险丝熔断。
故障分析:蓄电池保险丝熔断,说明蓄电池供电流过大,检测步骤如下:蓄电池电压是否过低;
1、若蓄电池电压过低,再检测蓄电池充电电路是否正常;
2、若蓄电池充电电路正常,再检测蓄电池电压检测电路工作是否正常。
八、UPS只能由市电供电而不能转为逆变供电。
故障分析:不能进行市电向逆变供电转换,说明市电向逆变供电转换部分出现故障,要重点检测: 蓄电池电压是否过低,蓄电池保险丝是否完好;
1、若蓄电池部分正常,检查蓄电池电压检测电路是否正常;
2、若蓄电池电压检测电路正常,再检查市电向逆变供电转换控制输出是否正常。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。